ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$\mathrm{f}(1)=0$	B1	1	
(ii)	$f(-2)=-24+8+14+2=0$	B1	1	
(iii)	$\frac{(x-1)(x+2)}{3 x^{2}+2 x^{2}-7 x+2}=\frac{(x-1)(x+2)}{(x-1)(x+2)(a x+b)}$			Recognising $(x-1),(x+2)$ as factors
	$3 x^{3}+2 x^{2}-7 x+2=\frac{(x-1)(x+2)(a x+b)}{(x-1)}$	B1		
	$a x^{3}=3 x^{3} \quad-2 b=2$	B1	3	
	$a=3 \quad b=-1$	B1		
				Or By division M1 attempt started
				M1 complete division
				A1 Correct answers
(b)	Use $\frac{1}{3}$	B1		
	$3\left(\frac{1}{3}\right)^{3}+2\left(\frac{1}{3}\right)^{2}-7 \times \frac{1}{3}+d=2$	M1		Remainder $\mathrm{Th}^{\underline{\mathrm{M}}}$ with $\pm \frac{1}{3} \pm 3$
	$d=4$	A1F	3	Ft on $-\frac{1}{3}\left(\right.$ answer $\left.-\frac{4}{9}\right)$ Or by division M1 M1 A1 as above
	Total		8	
2(a)	$\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{-2}{t^{2}} \quad \frac{\mathrm{~d} x}{\mathrm{~d} t}=-4$	M1A1		
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{1}{\mathrm{~d} x}=\frac{1}{2 t^{2}}$	m1		Use chain rule
		A1F	4	Follow on use of chain rule (if $\mathrm{f}(t)$)
				Or eliminate $t: \mathrm{M} 1 \quad y=\mathrm{f}(x)$ attempt to differentiate M1A1 chain rule A1F reintroduce t
(b)	$t=2 \quad m_{\mathrm{T}}=\frac{1}{8}$	B1F		follow on gradient (possibly used later)
	$x=-5 \quad y=2$	B1		
	$y-2=\frac{1}{8}(x+5)$	M1		Their (x, y), m
	$x-8 y+21=0$	A1F	4	Ft on (x, y) and m
(c)	$x-3=-4 t \quad y-1=\frac{2}{t}$	M1		
	$(x-3)(y-1)=-4 t \times \frac{2}{t}=(-8)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	3	Attempt to eliminate t AG convincingly obtained
	Total		11	

MPC4 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline \begin{tabular}{l}
3(a) \\
(b) \\
(c)
\end{tabular} \& \[
\begin{aligned}
\& R=\sqrt{13} \quad \text { Or } 3.6 \\
\& \frac{\sin \alpha}{\cos \alpha}=\tan \alpha=\frac{2}{3} \quad \alpha \approx 33.7 \\
\& \text { maximum value }=\sqrt{13} \\
\& \cos (\theta+33.7)=1 \quad(\theta=-33.7) \\
\& \theta=326.3
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
B1F \\
M1 \\
A1
\end{tabular} \& 3 \& \begin{tabular}{l}
Allow M1 for \(\tan \alpha=\frac{-2}{3}\) or \(\pm \frac{3}{2}\) AG convincingly obtained \\
AWRT 326
\end{tabular} \\
\hline \& Total \& \& 6 \& \\
\hline \begin{tabular}{l}
4(a) \\
(b) \\
(c)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& A=80 \\
\& 5000=80 \times k^{56} \\
\& k=\sqrt[56]{\frac{5000}{80}} \approx 1.07664
\end{aligned}
\]
\[
V=80 \times k^{106}=200707
\] \\
\(\ln 10000=\ln k^{t}\)
\[
t=\frac{\ln 10000}{\ln k}=124.7 \Rightarrow 2024
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
M1A1 \\
M1A1 \\
M1 \\
M1A1
\end{tabular} \& 3

2
2

3 \& | $\{$ SC1 Verification. Need 62.51 or better |
| :--- |
| Or using logs: M1 $\ln \left(\frac{5000}{80}\right)=56 \ln k$ |
| $\mathrm{A} 1 \mathrm{k}=\mathrm{e}^{\ln \left(\frac{62.5}{56}\right)}$ |
| Or $3 / 3$ for $k=1.076636$ |
| Or $\quad 1.076637$ seen |
| 200648 using full register k |
| M1 $t \ln k=\ln 10000$ |
| A1 CAO |
| Or trial and improvement M1 expression M1 125, 124, A1 2024 |

\hline \& Total \& \& 9 \&

\hline 5(a)(i) ${ }^{\text {(ii) }}$ (${ }^{\text {(}}$ (b) \& $$
\begin{aligned}
&(1-x)^{-1}=1+(-1)(-x)+\frac{(-1)(-2)}{2}(-x)^{2} \\
&=1+x+x^{2} \\
& \frac{1}{(3-2 x)}=\frac{1}{3}\left(1-\frac{2}{3} x\right)^{-1} \\
& \approx *\left(1+\frac{2}{3} x+\left(\frac{2}{3} x\right)^{2}\right) \\
& \approx \frac{1}{3}+\frac{2}{9} x+\frac{4}{27} x^{2}
\end{aligned}
$$

\[
$$
\begin{aligned}
(1-x)^{-2} & =1+(-2)(-x)+\frac{(-2)(-3)(-x)^{2}}{2} \\
& =1+2 x+3 x^{2}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 | \& 2

3 \& | First two terms $+k x^{2}$ |
| :--- |
| Or directly substitute into formula; |
| M1 power of 3 |
| M1 other coefficients (allow one error) |
| A1 CAO |
| AG convincingly obtained |
| First two terms $+k x^{2}$ |

\hline
\end{tabular}

MPC4 (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline (b)(i) \& \[
\begin{aligned}
\& l_{2} \text { has equation } \\
\& \mathrm{r}=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]+\lambda\left[\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{r}
2 \\
-3 \\
-1
\end{array}\right]\right]=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]+\lambda\left[\begin{array}{l}
2 \\
4 \\
2
\end{array}\right] \\
\& {\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
4 \\
0 \\
-4
\end{array}\right]=4-4=0} \\
\& \Rightarrow 90^{\circ}(\text { or perpendicular })
\end{aligned}
\] \& \begin{tabular}{l}
M1A1 \\
M1A1 \\
A1F
\end{tabular} \& 2

3 \& | Or $r=\left[\begin{array}{c} 2 \\ -3 \\ -1 \end{array}\right]+t\left[\begin{array}{l} 2 \\ 4 \\ 2 \end{array}\right] \mathrm{M} 1 \text { calculate and use }$ |
| :--- |
| direction vector A1 all correct |
| Clear attempt to use directions of $A C$ and l_{2} in scalar product |
| Accept a correct ft value of $\cos \theta$ |

\hline \& Total \& \& 10 \&

\hline 8(a) \& | $\begin{aligned} & \int \frac{\mathrm{d} x}{\sqrt{x-6}} \mathrm{~d} x=\int-2 \mathrm{~d} t \\ & 2 \sqrt{x-6}=-2 t+c \\ & t=0 \quad x=70 \quad \Rightarrow \quad c=16 \\ & t=8-\sqrt{x-6} \end{aligned}$ |
| :--- |
| The liquid level stops falling/flowing/ at minimum depth $x=22 \quad t=8-\sqrt{22-6}$ $t=4$ | \& \[

$$
\begin{gathered}
\text { M1 } \\
\text { A1A1 } \\
\text { m1A1F } \\
\text { A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$

\] \& 2 \& | Attempt to separate and integrate c on either side |
| :--- |
| Follow on c from sensible attempt at integrals $(\sqrt{\text { not }} \ln)$ |
| CAO (or AEF) |
| Use $x=22$ in their equation provided there is a c |
| Or start again using limits M1 $2 \sqrt{64}-2 \sqrt{16}= \pm 2 t$, A1 $t=4$ CAO |

\hline \& Total \& \& 9 \&

\hline \& Total \& \& 75 \&

\hline
\end{tabular}

